MAHA BARATHI ENGINEERING COLLEGE

NH-79, SALEM-CHENNAI HIGHWAY, A.VASUDEVANUR, CHINNASALEM (TK), KALLAKURICHI (DT) 606 201.
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
Accredited by NAAC and Recognized under section 2(f) & 12(B) status of UGC, New Delhi

www.mbec.ac.in | Ph: 04151-256333, 257333 | E-mail: mbec123@gmail.com

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

ET3491- EMBEDDED SYSTEMS AND IOT DESIGN

Il Year/ VI Semester B.E ECE

Regulation 2021
(As Per Anna University, Chennai syllabus)

http://www.mbec.ac.in/
mailto:mbec123@gmail.com

s,
1.2 MAHA BARATHI ENGINEERING COLLEGE
’5’,. (,“ NH-79, SALEM-CHENNAI HIGHWAY, A.VASUDEVANUR, CHINNASALEM (TK), KALLAKURICHI (DT) 606 201.

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
Accredited by NAAC and Recognized under section 2(f) & 12(B) status of UGC, New Delhi

www.mbec.ac.in | Ph: 04151-256333, 257333 | E-mail: mbec123@gmail.com

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

BONAFIDE CERTIFICATE

NAME: COURSE: B.E-ECE

REG.NO.: SEMESTER:VI

This is to certify that the bonafide record of work done by the student in the

ET3491- EMBEDDED SYSTEMS AND IOT DESIGN in the Department of
Electronics and Communication Engineering of Maha Barathi
Engineering College during the Academic year 2023-24.

Faculty In-Charge

Head of the Department
Date:

Submitted for the Practical Examination held on

INTERNAL EXAMINER EXTERNAL EXAMINER

http://www.mbec.ac.in/
mailto:mbec123@gmail.com

INDEX

S.no Date Name of the Experiment Page Marks Staff
No Signature
Experiments Using 8051
1(a) IArithmetic Operations Using 8051
1(b) Logical Operations Using 8051
2. Generation Of Square Waveform Using 8051
3. Programming Using On Chip Ports
4, Programming Using Serial Ports
5. Design Of Digital Clock Using Timers/Counters
Experiments Using ARM Processor
1(a) Interfacing ADC with ARM Processor
1(b) Interfacing DAC with ARM Processor
2(a) Blinking Of LED
2(b) Interfacing LCD with ARM Processor
3(a) Interfacing Keyboard with ARM Processor
3(b) Interfacing Stepper Motor with ARM Processor
Mini Projects for IOT
1. Garbage Segregator And Bin Level Indicator
2. Colour Based Product Sorting
3. Image Processing Based Fire Detection
4. 'Vehicle Number Plate Detection
5.

Smart Lock System

ARITHMETI PERATION IN 1

Experiment No.1 (a) Date:

AlM:

To perform 8 bit arithmetic operations of two numbers using 8051MicroController
(MC) Kit.

APPARATUS REQUIRED:

% 8051 Microcontroller kit, Keyboard & Power cable

PROGRAM: 8BIT ADDITION

MEMORY OBJECT MNEMONICS
ADDRESS CODES
4100 C3 CLR C
4101 74 MOV A#DATA1
4102 20
4103 94 ADD A#DATA2
4104 10
4105 90 MOV DPTR,#4500
4106 45
4107 00
4108 FO MOVX @DPTR,A
4109 80 HERE: SIMP HERE
410A FE

PROCEDURE:
1. Enter the above opcodes from 4100.
2. Execute the program; see that the result is stored correctly.

3.Change data and check if the results are correct each time

FLOW CHART:

S5TART

!

A(x)=[4100]=DATA 1

[4102]=DATA 2

'

STORE RESULT

[4200]=(Ax)

STC{P
PROGRAM: 8BIT SUBTRACTION

MEMORY OBJECT MNEMONICS

ADDRESS CODES
4100 74 MOV A#DATA1
4101 20
4102 94 SUBB A#DATA2
4103 10
4104 90 MOV DPTR,#4500
4105 45
4106 00
4107 FO MOVX @DPTR,A
4108 80 HERE: SIMP HERE

PR

RAM 8BIT MULTIPLICATION

MEMORY OBJECT MNEMONICS
ADDRESS CODES
4100 74 MOV A #DATA1
4101 0A
4102 75 MOV B,#DATA2
4103 FO
4104 88
4105 A4 MUL AB
4106 90 MOV DPTR,#4500
4107 45
4108 00
4109 FO MOVX @DPTR,A
410A A3 INC DPTR
410B E5 MOV A,B
410C FO
410D FO MOVX @DPTR,A
410E 80 HERE: SIMP HERE

PROGRAM :8 BIT DIVISION
MEMORY OBJECT MNEMONICS
ADDRESS CODES

4100 74 MOV A #DATAL
4101 0A

4102 75 MOV B #DATA2
4103 FO

4104 84 DIV AB

4105 90 MOV DPTR #4500
4106 45

4107 00

4108 FO MOVX @DPTR,A
4109 A3 INC DPTR

410A ES5 MOV A,B

410B FO

410C FO MOVX @DPTR,A
410D 80 HERE: SIMP HERE

RESULT:

Thus the arithmetic operations of 8051Microcontroller have been executed and output was

verified successfully.

LOGICAL OPERATION IN 1

Experiment No.1 (b) Date:
AlM:

To perform 8 bit logical operations of two numbers using 8051MicroController
(MC) Kit.

APPARATUS REQUIRED:

% 8051 Microcontroller kit, Keyboard & Power cable

PROGRAM: 8BIT LOGI PERATION
MEMORY OBJECT MNEMONICS
ADDRESS CODES

4100 74 MOV A#DATA1
4101 20
4102 94 ANL

A#DATAZ2

ORL

A#DATAZ2

XRL, #DATA2
4103 10
4104 90 MOV DPTR,#4500
4105 45
4106 00
4107 FO MOVX @DPTR,A
4108 80 HERE: SIMP HERE

PROCEDURE:

1. Enter the opcodes and the data in the trainer.
2. Execute the program and check for results.

3. Change data and check for the corresponding results.

ONE'S AND TWO'S COMPLEMENT OF NUMBER

RAM:

MEMORY OBJECT MNEMONICS

ADDRESS CODES
4100 74 MOV A#DATA
4101 CcC
4102 F4 CPL A
4103 90 MOV DPTR,#4200
4104 42
4105 00
4106 FO MOVX @DPTR,A
4107 04 INC A
4108 A3 INC DPTR
4109 FO MOVX @DPTR,A
410A 80 HERE: SIMP HERE
410B FE

FLOW CHART:

| START |

’

A(x)=[4100]=DATA

'

COMPLEMENT OF DATA
|

v

STORE RESULT

[4200] &[4210]

l

| STOP |

RESULT:

Thus the logical operations of 8051Microcontroller have been executed and output was verified

successfully.

Experiment No.2

AlM:

ENERATION OF

ARE WAVEFORM

Date:

To interface the DAC with 8051 microcontroller and generate the square wave, saw tooth wave

and triangular wave.

APPARATUS RE

D)

IRED:

% 8051 Microcontroller kit

» Keyboard

% Power cable

% DAC interfacing board and CRO
R

PROGRAM: SOUARE WAVEFORM

ADDRES LABEL MNEMONICS OPCOD COMMENTS
S E

4100 MOV DPTR, # EOCO 90,FF,C8 | Move the
immediateData

4103 START | MOV A, # 00 7400 | Eoco

4105 MOVX @ DPTR, A FO InitializeI the
AccumulatorTo zero

4106 LCALL DELAY 12,41,12 Long call the

4109 MOV A, # FF 74,FF delay Move the
content of

410B MOVX @ DPTR, A FO Accumulator to

410C LCALL DELAY 12,41,12 | FF Long call

410F LIMP START 02,41,03 | delay Long jump
to start Move the

4112 DELAY | MOV R1, #05 79,05 | 05 data To R

4114 LOOP | MOV R2, # FF 74,FF register
Decrement Jump NON

4116 HERE | DINZ R2, HERE DA,FE zeroReturn to main

4118 DINZ R1, LOOP D9,FA | program Short jump to

A11A RET 2o | Start

411C SZMP START 80,E3

CIRCUIT DIAGRAM:

Vee +5v | Veo
18 20 19 Al 13 3¢ 0
17 16 A2 18 —AAN 14 Vagr
14 15 A3 —
B ausm 12 A4 1408 e
>
8 9 A5 741 —
7 6 A6 — v
A7 — 4 O_E 5 A7 To
A6 3 10 2 A8 3 1 2
A5 o _I__ L GND]“‘1 25k
A4 [>e 1—~ 15pf
A3 -15V "= -
—
A2 [>o—)__
Al o] — |0SEL
AD Do._ ey
LOW
WAVEFORMS:
e SQUARE WAVEFORM
W
=t
Y TRIANGULAR WAVEFORM
- =t
SAWTOOTH WAVEFORM
')
=t

SQUARE WAVE

OBSERVATION:

AMPLITUDE TIME PERIOD

RESULT:

Thus the generation of square waveform using 8051Microcontroller has been executed and
the output was verified successfully.

PROGRAMMIN IN N CHIP PORTS IN 1

Experiment No.3 Date:

AIM:

To create an assembly language program for on chip ports in 8051 Microcontroller.

APPARATUS REQUIRED:

« 8051 Microcontroller kit
% Keyboard

Power cable
MEMORY OBJECT MNEMONICS
ADDRESS CODES

4100 74 MOV P1,#0xFF

4101 FF

4102 75 CLRP1.0

4103 01

4104 D2 LOOP:SETB P1.0

4105 02 ACALL DELAY

4106 XX

4107 C2 CLRP1.0

4108 02 ACALL DELAY

4109 XX

410A 80 SIJMP LOOP

410B FA

410C 75 DELAY:MOV R2,#0Xff

410D FF

410E 75 OUT LOOP:MOV
R1,#0xFF

410F FF

4110 DE IN LOOP:DIJNZ R1, IN
LOOP

4111 01

4112 DE DJNZ R2, OUT LOOP

4113 02

4114 22 RET

RESULT:

Thus the programming on chip port of 8051Microcontroller has been executed and the output
was verified successfully.

PROGRAMMIN ING SERIAL PORTS IN 8051
Experiment No.4 Date:

AIM:

To create an assembly language program for serial ports in 8051 Microcontroller.

APPARATUS REQUIRED:

< 8051 Microcontroller kit
% Keyboard
< Power cable

PROGRAM:

MOV TMOD, #20H
MOV TH1, #-3 H
MOV SCON, #50H
SET TR1

MOV SBUF #°Y”
JNB TI, HERE
CLRTI

MOV SBUF, #°N”
SIMP AGAIN

RESULT:

Thus the programming serial port of 8051Microcontroller has been executed and the output
was verified successfully.

DIGITAL CLOCK

Experiment NB‘ 5

AIM: !

Date:

To display thelgdigital clock specifically by displaying the hours, minutes

and seconds using 8051 Kits

PROGRAM:

Address | Label field | Mnemonic field Comments field

Main Program ORG 8000H Origin of the program from 8000H

8000 MOV DPTR.#2043H : Load DPTR with Control port Address of 2™ 8255

8003 MOV A_#80 ;: (A) = 80H = control word for all ports as output port

8005 MOV R7 #16H : (R7) = 16H = to display 16" year on years displays

8007 MOV DPTR. #2042H : Load DPTR with port C Address of 2™ 8255

SO00A MOV A.R7 :(A) = 16H

800B MOVX @DPTR.A : Display 16H at port C of 8255

800C MOV R6.#00 : (R6) =00

SO0E ACALL Month : Call month routine to display January

8010 MOV RS5.#0 : (R5) = 0 = first Day on Days displays

8012 ACALL Day ; Call the routine Day to display day at port A

8014 CINE R5.#1FH.Dayl ; Compare RS with 1FH (i.e. 31,,), if RS # 1FH then
jump to Dayl. No need of involving Accumulator in
compare

8017 ACALL Month ; Call month routine to display February

8019 MOV RS5.#0 : (R5) = 0 =to display beginning of the Day

801B ACALL Day : Call the routine Day to display day at port A

801D CJINE R5.#1CH.Dayl : Compare RS with 1CH (i.e. 28,,), if RS # 1CH then
jump to Dayl. In February month there are 28 days

8020 ACALL Month ; Call month routine to display March

8022 MOV RS5.#0 : (R5) = 0 = first Day on Days displays

8024 ACALL Day ; Call the routine Day to display day at port A

8026 CINE R5.#1FH.Dayl ; Compare R5 with 1FH (i.e. 31,p). if RS # 1FH then
jump to Dayl. No need of involving Accumulator in
compare

8029 ACALL Month ; Call month routine to display April

802B BACK: MOV RS #0 ; (R5) = 0 = first Day on Days displays

802D ACALL Day ; Call the routine Day to display day at port A

S802F CINE R5.#1 EH.Dayl ; Compare RS with 30,4, if RS#1EH then jump to Day

8032 ACALL Month ; Call month routine to display May / July

8034 MOV R5.#0 ; (R5) = 0 =to display beginning of the Day

8036 ACALL Day : Call the routine Day to display day at port A

8038 CINE R5.#1FH.Dayl ; Compare R5 with 31,4, if RS # 1FH then jump to
Dayl.

803B ACALL Month : Call month routine to display June / August

803D CINE R6.#08 BACK : Compare R6 with 07 (July), if R6#07 then jump
toBACK.

8040 MOV RS5.#0 : (R5) = 0 =to display beginning of the Day

8042 ACALL Day ; Call the routine Day to display day at port A

8044 CJINE R5.#1FH.Dayl ; Compare R5 with 31,4, if RS # 1FH then jump to
Dayl.

8047 ACALL Month ; Call month routine to display September

8049 BACKI: MOV RS #0 : (R5) = 0 = first Day on Days displays

804B ACALL Day ; Call the routine Day to display day at port A

804D CJINE R5.#1EH.Dayl : Compare R5 with 1EH (i.e. 30,,). if RS # 1EH then
jump to Dayl. No need of involving Accumulator in
compare

8050 ACALL Month ; Call month routine to display October / December

8052 MOV RS5.#0 ; (R5) = 0 =to display beginning of the Day

8054 ACALL Day ; Call the routine Day to display day at port A

8056 CJINE R5.#1FH.Dayl : Compare R5 with 31,,. if RS # 1FH then jump to
Dayl.

8059 ACALL Month ; Call month routine to display November

805B CINE R6.#12.BACK1 : Compare R6 with 12H. if R6#12H then jump to
BACKI.

S805E INC R7 ;: Increment the year

SOSF SIMP START : Repeat the process again

Observation:

Input
1200 00
1201 00
1202 00
1203 00
1204 00
Output:
Time is displayed inthe RTC board as
IHourl Minutes I seconds [
[X [0_Jo_Jo [5 9]
| X [0 Jo J1 Jo o]

RESULT:
Thus the design of digital clock has been executed in 8051 Microcontroller and output was
verified successfully.

INTERFACING ADC WITH ARM PROCE R

Experiment No.1(a) Date:
AlM:
To interface and Convert Analog Signal in Digital form using ARM processor.

APPARTAUS REQUIRED:
1. PC with keil pversion 5and flash magic workbench software
2. LPC2148 processor kit
3. USB Cable

THEORY:
In electronics, an analog-to-digital converter (ADC, A/D, A-D, or A-to-D) is a
system that converts an analog signal into a digital signal.
An ADC may also provide an isolated measurement such as an electronic device that
converts an input analog voltage or current to a digital number proportional to the magnitude
of the voltage or current. Typically the digital output will be a two's complement binary

number that is proportional to the input, but there are other possibilities.

PROCEDURE:
Keil Compiler
Step 1

. D
Open keil pversion project ~ menu ~ project ~ new W version project ~ Select

location ~ open new folder ~ give file name ~ save

Step 2
> >

Menu file new
Step3

Type a program ~ save a program with .c or .hextensions
Step 4

> > >
Right corner ~ target ~ source group right click = add existing files to group

“source groupl” add “c” and “h” files
StepS

. > 2> . > . >
Top of main window ~ targetl options for target =~ small window open ~ output (create

> >
hex file) enable listing(assembler listing) disable = Asm(enable ARM thump inter

working) disable ~ linker (use memory layout from target dialog) enable ~ OK

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Digital_signal_%28signal_processing%29
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Two%27s_complement

_ 2>
Step 6Build a program ~ check errors and warnings

Flash magic
Open Flash Magic s/w

9
Step 1: Select a device =~ LPC2148
9
Select comport = USB comport

9
Baud rate ~ 960

Oscillator freq ~ 12MHZ
Step 2: Erase blocks used by Hex files (enable)

Step 3:Browse.hex file
Step 4: Select verifying after programming
Step5: Click start

PROGRAM CODE:
MAIN ADC TEST
#include<LPC214x.H>
#include"ADC_Driver.c"

#include "lcd.c”
#include <stdio.h>
int main (void)
{
unsigned int adc_val,;
unsigned int temp;
unsigned char buf{4] = {0,0,0,0};
ADCInit();
Icdinit();
Iwait();
clrscr(10);
printstr("ADC Test",0,0);
wait();
while(1)
{
adc_val = ADC_ReadChannel();

temp = (unsigned int)((3*adc_val*100)/1024);
sprintf(buf,"%d",temp);
printstr(buf,0,1);

LCD.C
#include <LPC214x.h>

#defineRS ~ 0x00000400
#defineCE 0x00001800

void clrscr(charch);
void lcdinit(void);
void lcdcmd(char);
void Icddat(char);
void gotoxy(char,char);
void printstr(unsigned char *,char,char);
void wait (void);
void split_numbers(unsigned int number);
#define SET1
#define OFFO
unsigned int thousands,hundreds,tens,ones;
void wait (void){
int d;
for (d = 0; d <100000;d++);

void lcdinit()
{

IODIRO |= OXFFFFFFFF;

IOCLRO |= 0X00000FFF;
Icdcmd(0x28);

lcdcmd(0x28);

Icdcmd(0x0c);

Icdcmd(0x06);

Icdcmd(0x01);

Icdcmd(0x0f);
wait();
}
void gotoxy(char x, char y)
{
if(ly ==0)
Icdecmd(0x80+x);
else
Icdcmd(0xc0+x);
}

void printstr(unsigned char *str, char x, char y)

{

char i;
gotoxy(x,y);
wait();//(500);
for(i=0;str[i]!="0";i++)
Icddat(str[i]);
}

void lcdcmd(char cmd)
{
unsigned char LCDDAT;
LCDDAT = (cmd&0xf0);
IOSETO = LCDDAT;
IOCLRO =RS;
IOSETO = CE;
wait();//(100);

IOCLRO =CE;
IOCLRO = 0X00000FFF;
LCDDAT = ((cmd<<0x04)&0xf0):
IOSETO = LCDDAT;
IOCLRO = RS;
IOSETO = CE;
wait();//(100);

IOCLRO =CE;

IOCLRO = 0X00000FFF;

}
void Icddat(char cmd)

{
unsigned char LCDDAT;
LCDDAT = (cmd&0xf0);
IOSETO = LCDDAT,
IOSETO = RS;
IOSETO = CE;
wait();//(100);

IOCLRO =CE;
IOCLRO = 0X00000FFF;
LCDDAT = ((cmd<<0x04) & 0xf0);
IOSETO = LCDDAT,
IOSETO = RS;
IOSETO = CE;
wait();//(100);

IOCLRO =CE;
IOCLRO = 0X00000FFF;
k

void clrscr(char ch)
{
if(ch==0)
{
printstr(" ",0,0);
gotoxy(0,0);
}
else if(ch==1)
{
printstr(" "0,1);
gotoxy(0,1);
}

else

{

Icdecmd(0x01);
/I delay(100);

}
}
void split_numbers(unsigned int number)
{
thousands = (number /1000);
number %= 1000;
hundreds = (number / 100);
number %= 100;
tens = (number / 10);
number %= 10;
ones = number ;
}
void Wait_Msg(void)
{
Icdemd(0x01);
printstr(** Please Wait ", 0, 0);
}
void Welcome_Msg(void)
{
Icdemd(0x01);
printstr(" Welcome to ", 0,0);
printstr(" MAHABARATHI ", 0,1);

}

ADC DRIVER.C
#include<LPC214x.H>

Void ADC Init(void)
{
PINSEL1 |= 0x04000000;

IODIRO |= ~(0x04000000);
ADOCR |= 0x00200204;

ADOGDR

}
void ADC_Start Conversion(void)
{
ADOCR |= (1<<24);
}
void ADC_Stop Conversion(void)
{
ADOCR &= (~ (1<<24));
}
unsigned int ADC_Read Channel(void)
{

I/ unsigned int i;
unsigned long ADC_Val, t;
ADC_StartConversion();
while((ADODR2&0x80000000)==0);
if(ADOSTAT & 0x00000400)

{

[lprintstr("OVR",0,1);

return(0);

}
t = ADODR?2;
ADC_Val = ((t>>6) & 0x000003FF);//(ADODR2 & 0x000003FF); //((ADOCR>>6) &

0x000003FF);

/IADC_StopConversion();
return(ADC_Val);

Testing:

RESULT:

Connect Multimeter BLACKpin to the Gnd pin of LPC2148.
Connect Multimeter RED pin to the ADC pin ofLPC2148.
When working with the ADC, keep the switch position as givenbelow.

-

Thus the interfacing of analog to digital converter (ADC) has been executed in

LPC2148 kit and output was verified successfully.

INTERFACING DAC WITH ARM PROCE R

Experiment No.1(b) Date:
AlM:
To interface and convert Digital signal in Analog form using ARM Processor.

APPARTAUS REQUIRED:
1. PC with keil pversion 5and flash magic workbench software
2. LPC2148 processor kit
3. Multimeter
4. USB Cable

THEORY:

Digital-to-analog conversion is a process in which signals having a few (usually
two)defined levels or states (digital) are converted into signals having a theoretically infinite
number of states (analog). A common example is the processing, by a modem, of computer data

into audio-frequency (AF) tones that can be transmitted over a twisted pair telephone line. The
circuit that performs this function is a digital-to-analog converter (DAC).

Binary digital impulses, all by themselves, appear as long strings of ones and zeros, and
have no apparent meaning to a human observer. But when a DAC is used to decode the binary
digital signals, meaningful output appears. This might be a voice, a picture, a musical tune, or
mechanical motion.

PROCEDURE:
Keil Compiler

Step 1

. 2
Open keil pversion project ~ menu ~ project ~ new p version project ~ Select

location ~ open new folder ~ give file name ~ save

Menu file new

Type a program save a program with .c or .h extensions
Step 4
> > >
Right corner ~ target ~ source group right click = add existing files to group

“source groupl” add “c” and “h” files

S
working) disable ~ linker (use memory layout from target dialog) enable = OK
Step 6

S
Build a program check errors and warnings

http://searchcio-midmarket.techtarget.com/definition/digital
http://searchcio-midmarket.techtarget.com/definition/analog
http://searchmobilecomputing.techtarget.com/definition/modem
http://searchdatacenter.techtarget.com/definition/twisted-pair

Flash magic
Open Flash Magic s/w

9
Step 1: Select a device LPC2148
9
Select comport = USB comport

9
Baud rate 960

Oscillator freq ~ 12MHZ
Step 2: Erase blocks used by Hex files (enable)

Step 3:Browse.hex file
Step 4: Select verifying after programming

Step5: Click start
PROGRAMCODE:

DAC.C

#include<LPC214.H>

void wait_long(void)

{

intd;

for (d = 0; d <1000000;d++);

}

int main()

{
wait_long ();
wait_long ();
IODIRO = 0XO00000FFF;
IODIR1 = OXFFFF0000;
IOSETO =
OXFFFFFFFF; 10CLR1
= OXFFFF0000;
PINSEL1
0x00080000;

/IDACR= 0X00017FC0;

While (1);
}

Testing with DAC:

" Connect Multimeter BLACK pin to the Gnd pin ofLPC2148.

~ Connect Multimeter RED pin to the DAC pin ofLPC2148.

Output:
Measuring the voltage —

RESULT:
Thus the interfacing of Digital To Analog converter (DAC) have been executed in

LPC2148 kit and output was verified successfully.

ELASHIN ELED

Experiment No.2(a) Date:

AlM:
To interface LED with ARM processor.

APPARATUS REQUIRED :
1. PC with keil pversion 5and flash magic workbench software
2. LPC2148 processor kit
3. USB Cable

THEORY
LED

Light Emitting Diodes (LED) is the most commonly used output components, usually for
displaying pins digital states. Typical uses of LEDs include alarm devices, timers and

confirmation of user input such as a mouse click or keystroke.

PROCEDURE:
Keil Compiler
Step 1

. D
Open keil pversion project ~ menu ~ project ~ new W version project ~ Select
-2 > -

location open new folder give filename save

> >
Step 2 Menu ~ file new

Step3
9

Type a program save a program with .c or.h extensions
Step 4

> > >
Right corner ~ target = source group right click = add existing files to group

“source groupl” add “c” and “h” files
StepS

> >
output(create hex file) enable listing (assembler listing) disable = Asm (enable ARM thump inter

> >
working) disable ~ linker (use memory layout from target dialog) enable = OK
Step 6

. > :
Build a program ~ check errors and warnings.

PROGRAM DE:
Icd.c
#include <LPC214x.h>
void wait (void)
{
int d; for (d = 0; d <100000;d++);
}

int main(void)

{
IODIRO = 0x80002000;
While(1)

IOCLRO= 0x80002000;
Wait();
IOSETO0= 0x80002000;
Wait();
}
}

Testing the LED with LPC2148

Give +3.3V power supply to LPC2148 Primer Board; the LED is connected with
LPC2148 Primer Board. When the program is downloading into LPC2148 in Primer
Board, the LED output is working that the LED is ON.

Qutput:
The LPC2148 Kit has 16 nos., of Point LEDs, connected with port pins (P1.16 to P1.31), to
make port pins high LED will glow.

RESULT:

Thus the interfacing of LED with ARM processor is done successfully.

INTERFACE LCD WITH ARM PROCESSOR

Experiment No.2(b) Date:

AlM:
To interface LCD with ARM processor

APPARTAUS REQUIRED:
1. PC with keil pversion 5and flash magic workbench software
2. LPC2148 processor kit
3. USB Cable

THEORY:
LCD (Ligui | Displ

Liquid Crystal Display also called as LCD is very helpful in providing user interface as
well as for debugging purpose. A liquid crystal display (LCD) is a flat panel display that uses the
light modulating properties of liquid crystals (LCs). LCD Modules can present textual
information to user.

PROCEDURE:
Keil ompiler

Step 1

. D
Open kelgversmn project ~_menu ~ project ~ new W version project ~ Select

location ~ open new folder ~ give file name ~ save

Step 2
> >

Menu file new

Step3
Type a program ~ save a program with .c or .h extensions

Step 4
> > >
Right corner ~ target ~ source group right click = add existing files to group

“source groupl” add “c” and “h” files

S
working) disable ~ linker (use memory layout from target dialog) enable = OK
Step 6

S
Build a program check errors and warnings

Flash magic
Open Flash Magic s/w

9
Step 1: Select a device9 LPC2148
Select comport = USB comport

Baud rate9960

Oscillator freq ~ 12MHZ
Step 2: Erase blocks used by Hex files (enable)

Step 3:Browse.hex file
Step 4: Select verifying after programming
Stepb: Click start

PROGRAM DE:

Icd.h

void clrscr(char ch);

void Icdinit(void);

void lcdcmd(char);

void Icddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number O or
1 void printstr(char *,char,char); //string,column(x),line(y) void wait
(void);

void split_numbers(unsigned int number);

void Wait_Msg(void);

void Welcome_Msg(void);

led.c
#include <LPC214x.h>

#define RS 0x00000400 /* P0.10*/
#define CE 0x00001800 /* P1.11*/
void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char);

void Icddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or 1

voidprintstr(char*,char,char); //string,column(x),line(y)
void wait(void);
void split_numbers(unsigned int number);
#define SET1
#define OFFO
unsigned int thousands,hundreds,tens,ones;
void wait (void){ [* wait function*/
int d;
for (d = 0; d <100000;d++); * only to delay for LED flashes*/

}
void lcdinit()

{

IODIRO |= OX0O000FFFF;
IOCLRO |= 0X00000FFF;
Icdcmd(0x28);

Icdcmd(0x28);

Icdecmd(0x0c);

Icdcmd(0x06);

Icdcmd(0x01);

Icdcmd(0x0f);

wait();

}
void gotoxy(char x, char y)
{
if(y == 0)
Icdemd(0x80+X);
else
Icdemd(0xc0+Xx);
}

void printstr(char *str, char x, char y)

{

char i;

gotoxy(x,y);
wait();//(500);

for(i=0;str[i]!="\0";i++)

Icddat(str[i]);
}
void lcdcmd(char cmd)
{

unsigned char LCDDAT;
LCDDAT = (cmd&0xf0); //highernibble
IOSETO = LCDDAT,
IOCLRO = RS;
IOSETO =CE;

wait();//(100); /lenable lcd

IOCLRO =CE;
IOCLRO = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0); //lower nibble

IOSETO = LCDDAT;
IOCLRO =RS;
IOSETO = CE;
wait();//(100); /lenable lcd
IOCLRO =CE;
IOCLRO = 0X00000FFF;
}
void lcddat(char cmd)
{
unsigned char LCDDAT;
LCDDAT = (cmd&0xf0); //highernibble
IOSETO = LCDDAT;
IOSETO = RS;
IOSETO = CE;
wait();//(100); /lenable Icd
IOCLRO =CE;
IOCLRO = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lowernibble

IOSETO = LCDDAT,;
IOSETO = RS;

IOSETO = CE;
wait();//(100);
IOCLRO =CE;

/lenable Icd

IOCLRO = 0X00000FFF;

ks

void clrscr(char ch)
{
if(ch==0)
{
printstr(" ",0,0);
gotoxy(0,0);
}
else if(ch ==1)
{
printstr(" ",0,1);
gotoxy(0,1);
}
else
{
Icdcmd(0x01);
I/ delay(100);
}
}

void split_numbers(unsigned int number)

{
thousands = (number /1000);

number %= 1000;
hundreds = (number / 100);
number %= 100;

tens = (number / 10);
number %= 10;

ones = number ;

}
void Wait_Msg(void)

{
Icdcmd(0x01);

printstr(" WELCOME TO ", 0, 0);
printstr("MAHABARATHI ENGG COLLEGE", 0, 1);

}
void Welcome_Msg(void)

{

Icdcmd(0x01);

printstr(* ARM-7 LPC2148 ", 0, 0);
printstr(""32-Bitcontroller”, 0, 1);

by

main_LCD_Test.c
#include <LPC214x.H>/* LPC214x definitions */
#include "lcd.h™ /* includes lcd driver funtions*/
int main(void)

{

Icdinit(); /*Initializelcd*/

Wait_Msg(); /*Display message - "Please Wait"*/

Welcome_Msg(); /*Display message - "Welcome to MAHABARATHI ENGG COLLEGE"*/

while(1) [*LoopForever*/

{

Testing the LCD Module with L PC214

Give +3.3V power supply to LPC2148 Primer Board; the LCD is connected with
microcontroller LPC2148 Primer Board. When the program is downloading into LPC2148 in
Primer Board, the screen should show the text messages.

TPUT:
"WELCOMETO"

"MAHA BARATHI ENGG COLLEGE

RESULT:
Thus the interfacing LCD display with ARM processor is done

and text is displayed in LCD

INTERFACING OF KEYBOARD WITH ARM PROCESSOR

Experiment No.3(a) Date:

AlM:
To interface Keyboard with ARM processor.

APPARATUS REQUIRED :
1. PC with keil pversion 5and flash magic workbench software
2. LPC2148 processor kit

3. USB Cable
KEYPAD:

A keypad is a set of buttons arranged in a block or "pad" which usually bear digits,

symbols and usually a complete set of alphabetical letters. If it mostly contains numbers then it

can also be called a numeric keypad. Keypads are found on manyalphanumeric keyboardsandon

other devices such as calculators, push-button telephones, combination locks, and digital door

locks, which require mainly numeric input. Here LPC2148 using 4 X 4 matrix keypad.

PR

EDURE:

Keil ompiler

Step 1

. D
Open keil pversion project ~ menu ~ project ~ new W version project ~ Select

location ~ open new folder ~ give file name ~ save

Menu file new

Type a progra save a program with .c or .h extensions
m

Step 4

> > >
Right corner ~ target = source group right click = add existing files to group

“source groupl” add “c” and “h” files

S
working) disable ~ linker (use memory layout from target dialog) enable = OK
Step 6

. > :
Build a program ~ check errors and warnings

https://en.wikipedia.org/wiki/Alphanumeric_keyboard
https://en.wikipedia.org/wiki/Calculators
https://en.wikipedia.org/wiki/Calculators
https://en.wikipedia.org/wiki/Combination_locks
https://en.wikipedia.org/wiki/Digital_door_lock
https://en.wikipedia.org/wiki/Digital_door_lock

Flash magic
Open Flash Magic s/w

9
Step 1: Select a device9 LPC2148
Select comport = USB comport

Baud rate9960

Oscillator freq ~ 12MHZ
Step 2: Erase blocks used by Hex files (enable)

Step 3:Browse.hex file
Step 4: Select verifying after programming

Stepb: Click start
PROGRAM DE:

defs.h

/*********** Iocal defe n it |0 ns ***********************************/

#define ROW1 0x00010000;
#define ROW2 0x00020000;
#define ROW3 0x00040000;
#define ROW4 0x00080000;
#define SW1 0x00000001;

#define SW2 0x00000002;

#define SW3 0x00000004;

#define SW4 0x00000008;

#define ERROx00000000;

#define ROW_MASK 0x000F0000;
#define STSEG_ENB 0x00B80000;
#define DIGI1_ENB 0x00080000;
#define DIGI2_ENB 0x00100000;
#define DIGI3_ENB 0x00200000;
#define DIGI4_ENB 0x00800000;
#define STSEG_LEDOxff000000;
#define ZERO 0x3F000000;
#define ONE 0x06000000;

#define TWO 0x5B000000;
#define THREEOXx4F000000;

#define FOUR 0x66000000;
#define FIVE 0x6D000000;
#define SIX 0x7D000000;
#define SEVEN 0x07000000;
#define EIGHT 0x7F000000;
#define NINE 0x6F000000;
#define AAA 0x77000000;
#define bbb 0x7C000000;
#define ccc 0x39000000;
#define ddd Ox5E000000;
#define eee 0x79000000;
#define fff0x71000000;

lcd.h

void clrscr(char ch);

void Icdinit(void);

void lcdcmd(char);

void Icddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0O or
1 void printstr(char *,char,char); //string,column(x),line(y) void wait
(void);

void split_numbers(unsigned int number);

void Wait_Msg(void);

void Welcome_Msg(void);

mat_7seq.h
/* Function prototypes */

void init_Matrix_7seg(void);
unsigned long scan_row(unsigned int);
unsigned int catch_key(void);
void clearall_7seg(void);
void clearDigit_7seg(int);
void Digit_Dispay(int, unsigned int);

void split_numbers(unsigned int);

void Display_Number(unsigned int);
void Alpha_Dispay(int, unsigned int);

main.c
#include <LPC214x.h>
#include "mat_7seg.h"
#include "lcd.h"
int main()
{
unsigned int key, last_key, Disp_key;
init_Matrix_7seg(); // Initialize matrix keyboard and 7segment dispaly
clearall_7seg(); Il clear 7 segment display
last_key=0; /I Initialize this variable

tozero while(1)

{
key = /I scan for a valid key press
catch_key(); I/ zero means no key is pressed
if(key !=0)
{
if(key 1= last_key) // check whether the same key is pressed again(assume this as
STEP1)

Disp_key = key; // valid new key is stored in another variable

last_key = key; // this variable's value is used for STEP1 }

¥
Alpha_Dispay(4,Disp_key [*this function is used to display number in hex format

(single digit only)*/
}
}

matrix 7seqg driver.c#inclu
de <LPC214x.h> #include
"defs.h"

void init_Matrix_7seg(void)

IODIR1 |= OxffOf0000; // set 7seg LEDs as output ports and matrix's MSB as inputs and LSB
as outputs
IODIRO |= /1 set P0.19 to P0.22 as outputs to drive 7seg enable pins

S7SEG_ENB; Il since we are using active low 7 seg display, the enable

IOPINO [= STSEG_ENB: /o100l be initially set to HIGH.
signals
}
unsigned long scan_row(unsigned int row_num)
{

/lunsigned int row,i;

unsigned long val;

IOSET1= ROW_MASK; /lclear the previous scan row output ie make all row ops high
switch(row_num)

{
case 1. IOCLR1 = ROW1;break; // make P1.16 low
case 2: IOCLR1 = ROW2;break; // make P1.17 low
case 3: IOCLR1 = ROWS3;break; // make P1.18 low
case 4: IOCLR1 = ROW4;break; // make P1.19 low
//default: row = ERR;
}
1 for(i=0;i<=65000;i++);
val=10PIN1; /I read the matrixinputs
val = ((val >> 20) & 0x0000000F)"0x0000000F; // shift the colum value so that
it comes to LSB
/I XORing is done to take 1's complement of shifted value.

return(val);

}

unsigned int catch_key(void)
{

unsigned long v;

v = scan_row(1);

switch(v)

{

case l:return(13);

case 2:return(14);

case 4: return(15);
case 8: return(16);
}

v =scan_row(2);
switch(v)

{

case 1: return(9);
case 2:return(10);
case 4:return(11);
case 8: return(12);
}

v = scan_row(3);
switch(v)

{

case 1: return(5);
case 2: return(6);
case 4:return(7);
case 8:return(8);
}

v = scan_row(4);
switch(v)

{

case 1:return(1);
case 2:return(2);
case 4:return(3);
case 8: return(4);
default: return(0);

}

}

void clearall_7seg(void)

{

IOPIN1 &= ~S7SEG_LED; // make all the 7seg led pins to LOW
IOPINO |=S7SEG_ENB // Disable all the 7 segdisplay

¥

void clearDigit_7seg(int digit_num)

{

IOPINO |= STSEG_ENB; // clear enables first

switch(digit_num)

{

case 1: {

IOPINO =~DIGI1_ENB;
break;

}

case 2: {

IOPINO =~DIGI2_ENB;
break;

}

case3:
{
IOPINO =~DIGI3_ENB;
break;
}

cased

{

IOPINO =~DIGI4_ENB,;
break;

k
k

IOPIN1 &= ~S7SEG_LED; // make all the 7seg LED pins LOW

}

// now enable only thedigitl

// now enable only thedigit2

// now enable only thedigit3

/I now enable only thedigit4

void Digit_Dispay(int digit_num, unsigned int value)

{

clearDigit_7seg(digit_num);

switch(value)

{

case 0: IOPIN1 |= ZERO;break;
case 1: IOPIN1 |= ONE; break;
case 2: IOPIN1 |= TWO,; break;

case 3: IOPIN1 |= THREE;break;
case 4: IOPIN1 |= FOUR,; break;
case 5: IOPIN1 |= FIVE; break;
case 6: IOPIN1 |= SIX; break;
case 7: IOPIN1 |= SEVEN; break;
case 8: IOPIN1 |= EIGHT; break;
case 9: IOPIN1 |= NINE;break;

}
}
void Alpha_Dispay(int digit_num, unsigned int value)
{
clearDigit_7seg(digit_num);

switch(value)

{
case 1: IOPIN1 |= ZERO;break;
case 2: IOPIN1 |= ONE; break;
case 3: IOPIN1 |= TWO,; break;
case 4: IOPIN1 |= THREE;break;
case 5: IOPIN1 |= FOUR,; break;
case 6: IOPIN1 |= FIVE; break;
case 7: IOPINL1 |= SIX; break;
case 8: IOPIN1 |= SEVEN; break;
case 9: IOPIN1 |= EIGHT; break;
case 10: IOPIN1 |= NINE; break;
case 11: IOPIN1 |= AAA,; break;
case 12: IOPIN1 |= bbb; break;
case 13: IOPIN1 |= ccc; break;
case 14: IOPIN1 |= ddd; break;
case 15: IOPIN1 |= eee; break;
case 16: IOPIN1 |= fff;break;
}
}

void split_numbers(unsigned int number)

{

thousands = (number /1000);
number %= 1000;

hundreds = (number / 100);
number %= 100;

tens = (number / 10);
number %= 10;

ones = number ;

by

lisieisiainiaisiaiasiiaissiaiaissiniaissiaisisiaiasiaissiiaissiaiaissiniaisiaiasaiaissaiaiasiaiaisiaiaisiaiaisiaiaiaisialed
void Display_Number(unsigned int num)
{
unsigned int i;
if(num <= 9999)
{
clearall_7seg();
split_numbers((unsignedint)num);
Digit_Dispay(4, ones);
for(i=0;i<10000;i++);
Digit_Dispay(3, tens);
for(i=0;i<10000;i++);
Digit_Dispay(2,hundreds);
for(i=0;i<10000;i++);
Digit_Dispay(1, thousands);
for(i=0;i<10000;i++);
}
}

Ied.c

#include <LPC214x.h>

#define RS 0x00000400 /* P0.10 */
#define CE 0x00001800 /* P1.11 */
void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char);

void Icddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or 1
voidprintstr(char*,char,char); //string,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);

#define SET1

#define OFFO

unsigned int thousands,hundreds,tens,ones;

void wait (void){ [* wait function*/

int d;

for (d = 0; d <100000;d++); * only to delay for LED flashes */

}
void Icdinit()

{

IODIRO |= OX0O000FFFF;
IOCLRO |= 0X00000FFF;
Icdcmd(0x28);
Icdcmd(0x28);
Icdecmd(0x0c);
Icdecmd(0x06);
Icdcmd(0x01);
Icdcmd(0x0f);
wait();

}
void gotoxy(char x, char y)
{

if(y ==0)
Icdemd(0x80+X);
else
Icdecmd(0xc0+Xx);

}

void printstr(char *str, char x, char y)

{

char i;

gotoxy(x,y);
wait();//(500);
for(i=0;str[i]!="0";i++)
Icddat(str[i]);

}

void lcdcmd(char cmd)

{

unsigned char LCDDAT;
LCDDAT = (cmd&0xf0);
IOSETO = LCDDAT;
IOCLRO = RS;

IOSETO =CE;

wait();//(100);

IOCLRO =CE;

IOCLRO = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0);

IOSETO = LCDDAT,;
IOCLRO = RS;

IOSETO =CE;
wait();//(100);

IOCLRO =CE;

IOCLRO = 0X00000FFF;

}
void Icddat(char cmd)

{
unsigned char LCDDAT;

LCDDAT = (cmd&0xf0);

IOSETO = LCDDAT,;
IOSETO0 = RS;

IOSETO =CE;
wait();//(100);

IOCLRO =CE;

IOCLRO = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0):

//highernibble

/lenable lcd

/llowernibble

/lenable Icd

//highernibble

/lenable lcd

/lowernibble

IOSETO = LCDDAT;
IOSETO0 = RS;
IOSETO =CE;
wait();//(100);
IOCLRO =CE;
IOCLRO = 0X00000FFF;
}
void clrscr(char ch)
{ if(ch==0)

{

printstr("",0,0);
gotoxy(0,0);
}

else if(ch == 1)

{
printstr(" ",0,1);

gotoxy(0,1);
}
else
{

Icdcmd(0x01);

//delay(100);

k
¥

/lenable lcd

void split_numbers(unsigned int number)

{

thousands = (number /1000);

number %= 1000;

hundreds = (number / 100);

number %= 100;
tens = (number / 10);
number %=10;

ones = number;

¥

void Wait_Msg(void)

{

Icdcmd(0x01);
printstr("PLEASEWAIT ", 0, 0);

}
void Welcome_Msg(void)

{

Icdcmd(0x01);

printstr(* WELCOME TO ", 0, 0);
printstr("SM MICRRO SYSTEM", 0, 1);

by

Testing with Kevboard:

Each press of a key corresponding character is displayed on the Seven Segment Display.

Qutput:
Swl —

RESULT:
Thus the keyboard interfacing with ARM processor is done and pressed key is verified

successfully.

INTERFACIN FSTEPPER MOTOR USING ARMPROCE R

Experiment No.3(b) Date:
AlM:
To interface stepper motor with ARM processor.

APPARTAUS REQUIRED:
1. PC with keil pversion 5and flash magic workbench software
2. LPC2148 processor kit
3. USB Cable
4

Stepper motor with driver module

THEORY:

A stepper motor is a brushless, synchronous electric motor that converts digital pulses
into mechanical shaft rotation. Every revolution of the stepper motor is divided into a discrete
number of steps, and the motor must be sent a separate pulse for each step.

PROCEDURE:
Keil ompiler

Step 1

. D
Open keil pversion project ~ menu ~ project ~ new W version project ~ Select

location ~ open new folder ~ give file name ~ save

Step 2
> >

Menu file new

Step3
Type a program ~ save a program with .c or .h extensions

Step 4
> > >
Right corner ~ target = source group right click = add existing files to group

“source groupl” add “c” and “h” files

S
working) disable ~ linker (use memory layout from target dialog) enable = OK
Step 6

. > :
Build a program ~ check errors and warnings

Flash magic
Open Flash Magic s/w

9
Step 1: Select a device9 LPC2148
Select comport = USB comport

Baud rate9960

Oscillator freq ~ 12MHZ
Step 2: Erase blocks used by Hex files (enable)

Step 3:Browse.hex file
Step 4: Select verifying after programming
Stepb: Click start

PROGRAM DE:
stepper.c
#include<LPC214x.H> /* LPC214x definitions*/
#define stepl 0x00010000 /* P1.16 */
#define step2 0x00020000 /* P1.17 */
void wait (void)
{ [*waitfunction*/
intd;
for (d = 0; d <10000;d++); /* only to delay for LED flashes*/
}
void call_stepper_forw()
{
IOCLR1 = 0X00FF0000;
IOSET1 = 0X00040000;
wait();
wait();
IOCLR1 = 0X00FF0000;
IOSET1 = 0X00060000;
wait();
wait();
IOCLR1 = 0X00FF0000;
IOSET1 = 0X00070000;

wait();

wait();
IOCLR1 = 0X00FF0000;
IOSET1 = 0X00050000;
wait();
wait();
}
[*voidcall_reverse(void)
{
IOCLR1 = 0X00FF0000;
IOSET1 = 0X00050000;
wait();
wait();
IOCLR1 = 0X00FF0000;
IOSET1 = 0X00070000;
wait();
IOCLR1 = 0X00FF0000;
IOSET1 = 0X00060000;
wait();
IOCLR1 = 0X00FF0000;
IOSET1 = 0X00040000;
wait();
}*/
int main (void)
{

IODIR1 |= OXFFFFFFFF;
IOCLR1 |= 0X00FF0000;
wait();

while(1) [*LoopForever*/

{
call_stepper_forw();
/lcall_reverse();

wait();

|OCLR1 = 0XO00FF0000;
¥

Testing th r Motor with L PC2148:

Give +3.3V power supply to LPC2148 Primer Board; the Stepper Motor is connected
with LPC2148 Primer Board. When the program is downloading into LPC2148 in Primer
Board, the LED output is working that the LED is ON some time period and the LED is OFF
some other time period for a particular frequency. Now, the stepper motor is rotating.

Qutput;

The stepper motor was rotated in clockwise direction.

RESULT:

Thus the interfacing of stepper motor with ARM processor is done successfully.

Mini projects for I0T:

1. Garbage Segregator and Bin Level Indicator
2. Colour based Product Sorting
3. Image Processing based Fire Detection
4. Vehicle Number Plate Detection
5. Smart Lock System
Objective:

To apply the knowledge, they gained in doing the experiments.

Team constitution:

Ateam size may be from3 to 4 students.

Guidelines:

1. Students shall from a group and can do their mini project.

2. Student must buy their own hardware setup for doing mini projects.

3. Iftreyare utilizing the college resource, theyshould get approval from HoD.

4. At the end, a report along with hardware must be submitted to college.

5. Ifrequired students need to present their work as presentation.

1. Garbage Segregator and Bin Level Indicator
IDEA:

With progress in human technology we have seen a substantial progress in the amount of waste
generated. Recycling is the only way to manage this huge amount of waste. But recycling requires garbage to
be segregated. Without segregation garbage cannot be recycled because different type of garbage requires
different recycling processes.

Also it is important to educate users and instruct them every time they come near the dustbin about
instructions about throwing the trash. For this purpose we design a garbage disposal system that uses multiple
dustbins with a voice based system that speaks to the user each time he she stands before the dustbin.

The system makes use of a camera to detect presence if any person in front of the dustbin. If a person is
detected, the system issues voice instructions to the user about throwing right garbage inthe right bin. In case
the dustbin is full it instructs the user to find another dustbin to throw garbage in.

To develop this system we make use of a raspberry Pi controller. The controller is interfaced witha camera
and a voice speaker for detection and communication. The controller gets dustbin level input using ultrasonic
level sensors each having LED indicators interfaced to it. The level sensors are used to constantly feed the

raspberry pi with bin levels.

The Arduino Uno microcontroller is also interfaced with a Wifi module to transmit the level data over the
internet. The Level sensor panels are made to be easily mounted over any dustbin. This allows the system to

be easily screwed over any dustbin for instant installation.

The data is transmitted over 10T to 10T gecko platform which displays the bin level data over internet. This
indication can be used to alert the authorities that the garbage bins need to be emptied. Thus the system

automates garbage segregation and level monitoring to help counter the garbage crisis using I0T.

Components
Arduino Uno microcontroller, Ultrasonic level sensors,

Ultrasonic Level Sensors,LED Indicators, IR Sensors, LCD,

Buzzer, GSM, GPS, Servo motor and IR sensors

Power Supply

Rain Sensor » LCD

Ultrasonic Sensor |r——————— _ll Buzzer

Arduino Uno

IR Sensor > » GSM

GPS — — > Servo Motor

CIRCUIT DIAGRAM

RED (+5V)

}QOWN (GND)

2. Colour based Product Sorting
IDEA:

The proposed methodology is designed to efficiently sort items based on colour using machine learning with
the help of Raspberry Pi, camera modules, sensors, servo motors, and the IBM Watson visual recognition
model. The methodology includes several crucial steps to achieve accurate sorting:

Firstly, a comprehensive colour database is compiled, containing various product images captured under
various lighting conditions and angles. These images serve as the foundation for training the machine learning
model. Next, the learning model is constructed using Python and libraries for implementation. The model
undergoes preprocessing to enhance image quality and reduce noise, ensuring optimal performance during
classification. Finally, the robotic arm selectively picks up and sorts the products into designated bins based on
their predicted colours. This automated sorting process ensures efficient and accurate handling of large
volumes of diverse products. In summary, the proposed methodology combines machine learning, image
processing, and robotic automation to create a robust system for colour-based product sorting. This approach
offers a scalable solution for various industrial and commercial applications by leveraging Python
programming and advanced technologies.

Rectifier Regulator Display

POWER SUPPLY |y @i}

4

Lo fo |

10T

CAMERA [SORTER MECHANISM]

BIN‘S ‘

S0

3. Image Processing based Fire Detection

IDEA:

The main advantage of Image Processing Based Fire Detection System is the early warning benefit.
This system can be installed just about anywhere in a commercial building, malls and at many more public
places for fire detection. This system uses camerafor detecting fires. So we do not need any other sensors
to detect fire. System processesthe camera input and then processor processes it to detect fires. The heat
signatures and fire illumination patterns are detected in images to determine if it is a fire and take action
accordingly. On detecting fire system goes into emergency mode and sounds an alarm. Also displays the
status onthe LCD display informing about the system.

Hardware Specifications

BLOCK DIAGRAM:

POWER SUPPLY »

Rectifier Regulator

POWLER SUPPLY ‘

Display

© »—

CAMERA

BUZZER

4. VVehicle Number Plate Detection

IDEA:

The main objective of this project is to design an efficient automatic authorized
vehicle identification system by using the vehicle number plate.

ABSTRACT

The basic idea of this project is to build a number plate recognition system using
python. Real-Time license plate detection and recognition can be very useful for
automating toll booths, finding out traffic rule breakers, and for addressing other
vehicle-related security and safety issues.

The system uses a camera interfaced to a Raspberry Pi. The system constantly

processes incoming camera footage to detect any trace of number plates. On

sensing a number plate in front of the camera, it processes the camera input,

extracts the number plate part from the image. Processes the extracted image using

OCR and extracts the number plate number from it. The system then displays the

extracted number on the monitor.

eywords: Ras berry Pi, Ultrasonic sensor, web camera, power supply
SFE IFICATIO
Hardware components:
+« Raspberry pi
 Memory Card
s Ultrasonic sensor
s Web camera
s NMonitor
s 5V 2A Adapter

Software requirements:
« Python3 IDLE
« NOOBS OS
s VNC Viewer

o Advanced IP Scanner

BLOCK DIAGRAM

ULTRASONIC

Project Code :TEMBMAZ3101

POWER SUFPLY

SENSOR

CAMERA

L

RASPFEERRY PI

- MONITOR

5. SMART LOCK SYSTEM

IDEA:

The Smart Lock System with Face Recognition is a revolutionary innovation in home and office
security, combining advanced technologies like face recognition, keypad entry, and fingerprint scanning.
This innovative solution redefines access control, offering a seamless and user-friendly experience,
replacing traditional lock and key mechanisms. It goes beyond traditional methods, providing a safer and
more convenient solution for occupants.

The smart lock uses advanced face recognition technology, utilizing advanced algorithms and
artificial intelligence, to accurately identify and authenticate individuals based on facial features. This
technology eliminates the need for physical keys or cards, providing a secure, touch less access. The
system can even distinguish between live faces and photographs, ensuring robust security.

The keypad entry system complements the face recognition feature, providing users with a unique PIN
(Personal Identification Number) code for access. This adds security and serves as a backup in case of
low lighting or temporary obstructions, ensuring occupants can always gain access, even in challenging

situations.

The three-layer security system incorporates fingerprint scanning technology, a unique biometric
identifier for each individual. This method adds personalization and security, providing quick and

convenient access for authorized users. Fingerprint recognition is highly accurate and highly accurate,

making it an ideal biometric identifier.

POWER

SUPPLY

i LCD
FINGER PRINT
SENSOR
RFID READER ARDUINO UNO *| DCMOTOR
CONTROLLER
Keypad BUZZER

	Flash magic
	PROGRAM CODE:
	LCD.C
	ADC_ DRIVER.C
	Testing:
	Step 6
	Flash magic (1)
	PROGRAMCODE:
	Testing with DAC:
	Output:
	PROGRAM CODE: (1)
	Output: (1)
	RESULT:
	Step 6 (1)
	Flash magic (2)
	PROGRAM CODE: (2)
	lcd.c
	main_LCD_Test.c
	Testing the LCD Module with LPC2148
	OUTPUT:
	RESULT: (1)
	Step 6 (2)
	Flash magic (3)
	PROGRAM CODE: (3)
	lcd.h
	mat_7seg.h
	main.c
	/**/
	lcd.c (1)
	Testing with Keyboard:
	Output: (2)
	RESULT: (2)
	AIM:
	APPARTAUS REQUIRED:
	THEORY:
	Step 6 (3)
	Flash magic (4)
	PROGRAM CODE: (4)
	Testing the Stepper Motor with LPC2148:
	Output: (3)
	RESULT: (3)

