

 MAHA BARATHI ENGINEERING COLLEGE
NH-79, SALEM-CHENNAI HIGHWAY, A.VASUDEVANUR, CHINNASALEM (TK), KALLAKURICHI (DT) 606 201.

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
 Accredited by NAAC and Recognized under section 2(f) & 12(B) status of UGC, New Delhi

www.mbec.ac.in│Ph: 04151-256333, 257333 │ E-mail: mbec123@gmail.com

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

ET3491- EMBEDDED SYSTEMS AND IOT DESIGN

III Year/ VI Semester B.E ECE

Regulation 2021
(As Per Anna University, Chennai syllabus)

http://www.mbec.ac.in/
mailto:mbec123@gmail.com

 MAHA BARATHI ENGINEERING COLLEGE
 NH-79, SALEM-CHENNAI HIGHWAY, A.VASUDEVANUR, CHINNASALEM (TK), KALLAKURICHI (DT) 606 201.

 Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
 Accredited by NAAC and Recognized under section 2(f) & 12(B) status of UGC, New Delhi

 www.mbec.ac.in │Ph: 04151-256333, 257333 │ E-mail: mbec123@gmail.com

DEPARTMENT OF ELECTRONICS A N D COMMUNICATION
ENGINEERING

 BONAFIDE CERTIFICATE

 NAME: COURSE: B.E-ECE

 REG.NO.: SEMESTER:VI

 This is to certify that the bonafide record of work done by the student in the

ET3491- EMBEDDED SYSTEMS AND IOT DESIGN in the Department of
Electronics and Communication Engineering of Maha Bara th i
Engineering College during the Academic year 2023-24.

 Faculty In-Charge Head of the Department

 Date:

 Submitted for the Practical Examination held on…………….

 INTERNAL EXAMINER EXTERNAL EXAMINER

http://www.mbec.ac.in/
mailto:mbec123@gmail.com

INDEX

S.no

Date

Name of the Experiment

Page

No

Marks

Staff

Signature

Experiments Using 8051

1(a)

Arithmetic Operations Using 8051

1(b)

Logical Operations Using 8051

2.

Generation Of Square Waveform Using 8051

3.

Programming Using On Chip Ports

4.

Programming Using Serial Ports

5.

Design Of Digital Clock Using Timers/Counters

Experiments Using ARM Processor

1(a)

Interfacing ADC with ARM Processor

1(b)

Interfacing DAC with ARM Processor

2(a)

Blinking Of LED

2(b)

Interfacing LCD with ARM Processor

3(a)

Interfacing Keyboard with ARM Processor

3(b)

Interfacing Stepper Motor with ARM Processor

Mini Projects for IOT

1.

Garbage Segregator And Bin Level Indicator

2.

Colour Based Product Sorting

3.

Image Processing Based Fire Detection

4.

Vehicle Number Plate Detection

5.

Smart Lock System

ARITHMETIC OPERATIONS USING 8051

Experiment No.1 (a) Date:

AIM:

To perform 8 bit arithmetic operations of two numbers using 8051Micro Controller

(MC) kit.

APPARATUS REQUIRED:

 8051 Microcontroller kit, Keyboard & Power cable

PROGRAM: 8 BIT ADDITION

MEMORY

ADDRESS

OBJECT

CODES
MNEMONICS

4100 C3 CLR C

4101 74 MOV A,#DATA1

4102 20

4103 94 ADD A,#DATA2

4104 10

4105 90 MOV DPTR,#4500

4106 45

4107 00

4108 F0 MOVX @DPTR,A

4109 80 HERE: SJMP HERE

410A FE

PROCEDURE:

1. Enter the above opcodes from 4100.

2. Execute the program; see that the result is stored correctly.

3.Change data and check if the results are correct each time

FLOW CHART:

PROGRAM: 8 BIT SUBTRACTION

MEMORY

ADDRESS

OBJECT

CODES
MNEMONICS

4100 74 MOV A,#DATA1

4101 20

4102 94 SUBB A,#DATA2

4103 10

4104 90 MOV DPTR,#4500

4105 45

4106 00

4107 F0 MOVX @DPTR,A

4108 80 HERE: SJMP HERE

PROGRAM :8 BIT MULTIPLICATION

MEMORY

ADDRESS

OBJECT

CODES
MNEMONICS

4100 74 MOV A,#DATA1

4101 0A

4102 75 MOV B,#DATA2

4103 F0

4104 88

4105 A4 MUL AB

4106 90 MOV DPTR,#4500

4107 45

4108 00

4109 F0 MOVX @DPTR,A

410A A3 INC DPTR

410B E5 MOV A,B

410C F0

410D F0 MOVX @DPTR,A

410E 80 HERE: SJMP HERE

PROGRAM :8 BIT DIVISION

RESULT:

Thus the arithmetic operations of 8051Microcontroller have been executed and output was

verified successfully.

MEMORY

ADDRESS

OBJECT

CODES
MNEMONICS

4100 74 MOV A,#DATA1

4101 0A

4102 75 MOV B,#DATA2

4103 F0

4104 84 DIV A,B

4105 90 MOV DPTR,#4500

4106 45

4107 00

4108 F0 MOVX @DPTR,A

4109 A3 INC DPTR

410A E5 MOV A,B

410B F0

410C F0 MOVX @DPTR,A

410D 80 HERE: SJMP HERE

LOGICAL OPERATIONS USING 8051

Experiment No.1 (b) Date:

AIM:

To perform 8 bit logical operations of two numbers using 8051Micro Controller

(MC) kit.

APPARATUS REQUIRED:

 8051 Microcontroller kit, Keyboard & Power cable

PROGRAM: 8 BIT LOGIC OPERATION

MEMORY

ADDRESS

OBJECT

CODES
MNEMONICS

4100 74 MOV A,#DATA1

4101 20

4102 94 ANL

A,#DATA2

ORL

A,#DATA2

XRL, #DATA2

4103 10

4104 90 MOV DPTR,#4500

4105 45

4106 00

4107 F0 MOVX @DPTR,A

4108 80 HERE: SJMP HERE

PROCEDURE:

1. Enter the opcodes and the data in the trainer.

2. Execute the program and check for results.

3. Change data and check for the corresponding results.

ONE'S AND TWO'S COMPLEMENT OF NUMBER

PROGRAM:

MEMORY

ADDRESS

OBJECT

CODES
MNEMONICS

4100 74 MOV A,#DATA

4101 CC

4102 F4 CPL A

4103 90 MOV DPTR,#4200

4104 42

4105 00

4106 F0 MOVX @DPTR,A

4107 04 INC A

4108 A3 INC DPTR

4109 F0 MOVX @DPTR,A

410A 80 HERE: SJMP HERE

410B FE

FLOW CHART:

RESULT:

 Thus the logical operations of 8051Microcontroller have been executed and output was verified

successfully.

GENERATION OF SQUARE WAVEFORM

Experiment No.2 Date:

AIM:

To interface the DAC with 8051 microcontroller and generate the square wave, saw tooth wave

and triangular wave.

APPARATUS REQUIRED:

 8051 Microcontroller kit

 Keyboard

 Power cable

 DAC interfacing board and CRO

PROGRAM: SQUARE WAVEFORM

ADDRES

S

LABEL MNEMONICS OPCOD

E

COMMENTS

4100 MOV DPTR, # E0C0 90,FF,C8 Move the

immediate Data
EOCO

Initialize the

Accumulator To zero

Long call the

delay Move the

content of

Accumulator to

FF Long call

delay Long jump

to start Move the

05 data To R

register

Decrement Jump NON

zero Return to main

program Short jump to

start

4103 ST ART MOV A, # 00 74,00

4105 MOVX @ DPTR, A F0

4106 LCALL DELAY 12,41,12

4109 MOV A, # FF 74,FF

410B MOVX @ DPTR, A F0

410C LCALL DELAY 12,41,12

410F LJMP START 02,41,03

4112 DELAY MOV R1, # 05 79,05

4114 LOOP MOV R2, # FF 74,FF

4116 HE RE DJNZ R2, HERE DA,FE

4118 DJNZ R1, LOOP D9,FA

411A RET 22

411C SZMP START 80,E3

CIRCUIT DIAGRAM:

WAVEFORMS:

SQUARE WAVE

OBSERVATION:

AMPLITUDE TIME PERIOD

RESULT:

 Thus the generation of square waveform using 8051Microcontroller has been executed and

the output was verified successfully.

PROGRAMMING USING ON CHIP PORTS IN 8051

Experiment No.3 Date:

AIM:

 To create an assembly language program for on chip ports in 8051 Microcontroller.

APPARATUS REQUIRED:

 8051 Microcontroller kit

 Keyboard

 Power cable

MEMORY

ADDRESS

OBJECT

CODES
MNEMONICS

4100 74 MOV P1,#0xFF

4101 FF

4102 75 CLRP1.0

4103 01

4104 D2 LOOP:SETB P1.0

4105 02 ACALL DELAY

4106 XX

4107 C2 CLRP1.0

4108 02 ACALL DELAY

4109 XX

410A 80 SJMP LOOP

410B FA

410C 75 DELAY:MOV R2,#0Xff

410D FF

410E 75 OUT LOOP:MOV

R1,#0xFF

410F FF

4110 DE IN LOOP:DJNZ R1, IN

LOOP

4111 01

4112 DE DJNZ R2, OUT LOOP

4113 02

4114 22 RET

RESULT:

 Thus the programming on chip port of 8051Microcontroller has been executed and the output

was verified successfully.

PROGRAMMING USING SERIAL PORTS IN 8051

Experiment No.4 Date:

AIM:

 To create an assembly language program for serial ports in 8051 Microcontroller.

APPARATUS REQUIRED:

 8051 Microcontroller kit

 Keyboard

 Power cable

PROGRAM:

 MOV TMOD, #20H

 MOV TH1, #-3 H

 MOV SCON, #50H
 SET TR1

 MOV SBUF ,#”Y”

 JNB TI, HERE
 CLR TI

 MOV SBUF, #”N”

 SJMP AGAIN

RESULT:

 Thus the programming serial port of 8051Microcontroller has been executed and the output

was verified successfully.

D

I

G

I

DIGITAL CLOCK

Experiment No. 5 Date:

AIM:

To display the digital clock specifically by displaying the hours, minutes

and seconds using 8051 kits

PROGRAM:

 Observation:

Input

1200 00

1201 00

1202 00

1203 00

1204 00

Output:

Time is displayed in the RTC board as

! Hour ŀ Minutes ŀ seconds ŀ

X 0 0 0 5 9

X 0 0 1 0 0

RESULT:

 Thus the design of digital clock has been executed in 8051 Microcontroller and output was

verified successfully.

 INTERFACING ADC WITH ARM PROCESSOR

Experiment No.1(a) Date:

AIM:

To interface and Convert Analog Signal in Digital form using ARM processor.

APPARTAUS REQUIRED:

1. PC with keil µversion 5and flash magic workbench software

2. LPC2148 processor kit

3. USB Cable

THEORY:

In electronics, an analog-to-digital converter (ADC, A/D, A–D, or A-to-D) is a

system that converts an analog signal into a digital signal.

An ADC may also provide an isolated measurement such as an electronic device that

converts an input analog voltage or current to a digital number proportional to the magnitude

of the voltage or current. Typically the digital output will be a two's complement binary

number that is proportional to the input, but there are other possibilities.

PROCEDURE:

Keil Compiler

Step 1

Open keil µversion project


menu


project


new µ version project


Select

location


open new folder


give file name


save
Step 2

 

Menu file new

Step3

Type a program


save a program with .c or .hextensions

Step 4

Right corner


target


source group


right click


add existing files to group

“source group1”


add “c” and “h” files
Step5

Top of main window


target1


options for target


small window open


output (create

hex file) enable


listing(assembler listing) disable


Asm(enable ARM thump inter

working) disable


linker (use memory layout from target dialog) enable


OK

https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Analog_signal
https://en.wikipedia.org/wiki/Digital_signal_%28signal_processing%29
https://en.wikipedia.org/wiki/Electronics
https://en.wikipedia.org/wiki/Voltage
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Two%27s_complement

Step 6Build a program


check errors and warnings

Flash magic

Open Flash Magic s/w

Step 1: Select a device


LPC2148

Select comport


USB comport

Baud rate


9600

Oscillator freq


12MHZ

Step 2: Erase blocks used by Hex files (enable)

Step 3:Browse.hex file

Step 4: Select verifying after programming

Step5: Click start

PROGRAM CODE:

MAIN ADC TEST

#include<LPC214x.H>

#include"ADC_Driver.c"

#include "lcd.c"

#include <stdio.h>

int main (void)

{

unsigned int adc_val;

unsigned int temp;

unsigned char buf[4] = {0,0,0,0};

ADCInit();

lcdinit();

//wait();

clrscr(10);

printstr("ADC Test",0,0);

wait();

while(1)

{

adc_val = ADC_ReadChannel();

temp = (unsigned int)((3*adc_val*100)/1024);

sprintf(buf,"%d",temp);

printstr(buf,0,1);

}

}

LCD.C

#include <LPC214x.h>

#defineRS 0x00000400

#defineCE 0x00001800

void clrscr(charch);

void lcdinit(void);

void lcdcmd(char);

void lcddat(char);

void gotoxy(char,char);

void printstr(unsigned char *,char,char);

void wait (void);

void split_numbers(unsigned int number);

#define SET1

#define OFF0

unsigned int thousands,hundreds,tens,ones;

void wait (void){

int d;

for (d = 0; d <100000;d++);

void lcdinit()

{

IODIR0 |= 0xFFFFFFFF;

IOCLR0 |= 0X00000FFF;

lcdcmd(0x28);

lcdcmd(0x28);

lcdcmd(0x0c);

lcdcmd(0x06);

lcdcmd(0x01);

lcdcmd(0x0f);

wait();

}

void gotoxy(char x, char y)

{

if(y == 0)

lcdcmd(0x80+x);

else

lcdcmd(0xc0+x);

}

void printstr(unsigned char *str, char x, char y)

{

char i;

gotoxy(x,y);

wait();//(500);

for(i=0;str[i]!='\0';i++)

lcddat(str[i]);

}

void lcdcmd(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd&0xf0);

IOSET0 = LCDDAT;

IOCLR0 = RS;

IOSET0 = CE;

wait();//(100);

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0);

IOSET0 = LCDDAT;

IOCLR0 = RS;

IOSET0 = CE;

wait();//(100);

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

}

void lcddat(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd&0xf0);

IOSET0 = LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100);

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0);

IOSET0 = LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100);

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

}

void clrscr(char ch)

{

if(ch==0)

{

printstr("

gotoxy(0,0);

}

",0,0);

else if(ch == 1)

{

printstr("

gotoxy(0,1);

}

",0,1);

else

{

lcdcmd(0x01);

// delay(100);

}

}

void split_numbers(unsigned int number)

{

thousands = (number /1000);

number %= 1000;

hundreds = (number / 100);

number %= 100;

tens = (number / 10);

number %= 10;

ones = number ;

}

void Wait_Msg(void)

{

lcdcmd(0x01);

printstr(" Please Wait ", 0, 0);

}

void Welcome_Msg(void)

{

lcdcmd(0x01);

printstr(" Welcome to ", 0,0);

printstr(" MAHABARATHI ", 0,1);

}

ADC_ DRIVER.C

#include<LPC214x.H>

Void ADC Init(void)

{

PINSEL1 |= 0x04000000;

IODIR0 |= ~(0x04000000);

AD0CR |= 0x00200204;

AD0GDR

;

}

void ADC_Start Conversion(void)

{

AD0CR |= (1<<24);

}

void ADC_Stop Conversion(void)

{

AD0CR &= (~ (1<<24));

}

unsigned int ADC_Read Channel(void)

{

// unsigned int i;

unsigned long ADC_Val, t;

ADC_StartConversion();

while((AD0DR2&0x80000000)==0);

if(AD0STAT & 0x00000400)

{

//printstr("OVR",0,1);

return(0);

}

t = AD0DR2;

ADC_Val = ((t>>6) & 0x000003FF);//(AD0DR2 & 0x000003FF); //((AD0CR>>6) &

0x000003FF);

//ADC_StopConversion();

return(ADC_Val);

Testing:

 Connect Multimeter BLACKpin to the Gnd pin of LPC2148.

 Connect Multimeter RED pin to the ADC pin ofLPC2148.

 When working with the ADC, keep the switch position as givenbelow.

RESULT:

Thus the interfacing of analog to digital converter (ADC) has been executed in

LPC2148 kit and output was verified successfully.

 INTERFACING DAC WITH ARM PROCESSOR

 Experiment No.1(b) Date:

 AIM:

To interface and convert Digital signal in Analog form using ARM Processor.

APPARTAUS REQUIRED:

1. PC with keil µversion 5and flash magic workbench software

2. LPC2148 processor kit

3. Multimeter

4. USB Cable

THEORY:

Digital-to-analog conversion is a process in which signals having a few (usually

two)defined levels or states (digital) are converted into signals having a theoretically infinite

number of states (analog). A common example is the processing, by a modem, of computer data

into audio-frequency (AF) tones that can be transmitted over a twisted pair telephone line. The

circuit that performs this function is a digital-to-analog converter (DAC).

Binary digital impulses, all by themselves, appear as long strings of ones and zeros, and

have no apparent meaning to a human observer. But when a DAC is used to decode the binary

digital signals, meaningful output appears. This might be a voice, a picture, a musical tune, or

mechanical motion.

PROCEDURE:

Keil Compiler

Step 1

Open keil µversion project


menu


project


new µ version project


Select

location


open new folder


give file name


save

Step 2

 

Menu file new

Step3

Type a progra


save a program with .c or .h extensions
m

Step 4

Right corner


target


source group


right click


add existing files to group

“source group1”


add “c” and “h” files

working) disable


linker (use memory layout from target dialog) enable


OK

Step 6

Build a program


check errors and warnings

http://searchcio-midmarket.techtarget.com/definition/digital
http://searchcio-midmarket.techtarget.com/definition/analog
http://searchmobilecomputing.techtarget.com/definition/modem
http://searchdatacenter.techtarget.com/definition/twisted-pair

Flash magic

Open Flash Magic s/w

Step 1: Select a device


LPC2148

Select comport


USB comport

Baud rate


9600

Oscillator freq


12MHZ

Step 2: Erase blocks used by Hex files (enable)

Step 3:Browse.hex file

Step 4: Select verifying after programming

Step5: Click start

PROGRAMCODE:

DAC.C

#include<LPC214.H>

void wait_long(void)

{

intd;

for (d = 0; d <1000000;d++);

}

int main()

{

wait_long ();

wait_long ();

IODIR0 = 0X00000FFF;

IODIR1 = 0XFFFF0000;

IOSET0 =

0XFFFFFFFF; IOCLR1

= 0XFFFF0000;

PINSEL1 |=

0x00080000;

 //DACR= 0X00017FC0;

 While (1);

 }

 Testing with DAC:

Connect Multimeter BLACK pin to the Gnd pin ofLPC2148.

Connect Multimeter RED pin to the DAC pin ofLPC2148.

Output:

Measuring the voltage –

 RESULT:

Thus the interfacing of Digital To Analog converter (DAC) have been executed in

LPC2148 kit and output was verified successfully.

FLASHING OF LEDS

 Experiment No.2(a) Date:

 AIM:

To interface LED with ARM processor.

APPARATUS REQUIRED :

1. PC with keil µversion 5and flash magic workbench software

2. LPC2148 processor kit

3. USB Cable

THEORY

LED

Light Emitting Diodes (LED) is the most commonly used output components, usually for

displaying pins digital states. Typical uses of LEDs include alarm devices, timers and

confirmation of user input such as a mouse click or keystroke.

PROCEDURE:

Keil Compiler

Step 1

Open keil µversion project


menu


project


new µ version project


Select
  

location open new folder give filename save

Step 2 Menu


file


new

Step3



Type a program save a program with .c or.h extensions
Step 4

Right corner


target


source group


right click


add existing files to group

“source group1”


add “c” and “h” files
Step5



output(create hex file) enable


listing (assembler listing) disable


Asm (enable ARM thump inter

 working) disable


linker (use memory layout from target dialog) enable


OK
Step 6

Build a program


check errors and warnings.

PROGRAM CODE:

lcd.c

#include <LPC214x.h>

void wait (void)

{

int d; for (d = 0; d <100000;d++);

}

int main(void)

{

 IODIR0 = 0x80002000;

 While(1)

{

 IOCLR0= 0x80002000;

 Wait();

 IOSET0= 0x80002000;

Wait();

}

}

Testing the LED with LPC2148

Give +3.3V power supply to LPC2148 Primer Board; the LED is connected with

LPC2148 Primer Board. When the program is downloading into LPC2148 in Primer

Board, the LED output is working that the LED is ON.

Output:

The LPC2148 Kit has 16 nos., of Point LEDs, connected with port pins (P1.16 to P1.31), to

make port pins high LED will glow.

RESULT:

Thus the interfacing of LED with ARM processor is done successfully.

INTERFACE LCD WITH ARM PROCESSOR

 Experiment No.2(b) Date:

AIM:

To interface LCD with ARM processor

APPARTAUS REQUIRED:

1. PC with keil µversion 5and flash magic workbench software

2. LPC2148 processor kit

3. USB Cable

THEORY:

LCD (Liquid Crystal Display)

Liquid Crystal Display also called as LCD is very helpful in providing user interface as

well as for debugging purpose. A liquid crystal display (LCD) is a flat panel display that uses the

light modulating properties of liquid crystals (LCs). LCD Modules can present textual

information to user.

 PROCEDURE:

Keil ompiler

Step 1

Open keil µversion project


menu


project


new µ version project


Select

location


open new folder


give file name


save

Step 2

 

Menu file new

Step3

Type a program


save a program with .c or .h extensions

Step 4

Right corner


target


source group


right click


add existing files to group

“source group1”


add “c” and “h” files

working) disable


linker (use memory layout from target dialog) enable


OK

Step 6

Build a program


check errors and warnings

Flash magic

Open Flash Magic s/w

Step 1: Select a device


LPC2148

Select comport


USB comport

Baud rate


9600

Oscillator freq


12MHZ

Step 2: Erase blocks used by Hex files (enable)

Step 3:Browse.hex file

Step 4: Select verifying after programming

Step5: Click start

PROGRAM CODE:

lcd.h

void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char);

void lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or

1 void printstr(char *,char,char); //string,column(x),line(y) void wait

(void);

void split_numbers(unsigned int number);

void Wait_Msg(void);

void Welcome_Msg(void);

lcd.c

#include <LPC214x.h>

#define RS 0x00000400

#define CE 0x00001800

void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char);

void lcddat(char);

/* P0.10 */

/* P1.11 */

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or 1

voidprintstr(char*,char,char); //string,column(x),line(y)

void wait(void);

void split_numbers(unsigned int number);

#define SET1

#define OFF0

unsigned int thousands,hundreds,tens,ones;

void wait (void){ /* wait function*/

int d;

for (d = 0; d <100000;d++); /* only to delay for LED flashes*/

}

void lcdinit()

{

IODIR0 |= 0x0000FFFF;

IOCLR0 |= 0X00000FFF;

lcdcmd(0x28);

lcdcmd(0x28);

lcdcmd(0x0c);

lcdcmd(0x06);

lcdcmd(0x01);

lcdcmd(0x0f);

wait();

}

void gotoxy(char x, char y)

{

if(y == 0)

lcdcmd(0x80+x);

else

lcdcmd(0xc0+x);

}

void printstr(char *str, char x, char y)

{

char i;

gotoxy(x,y);

wait();//(500);

for(i=0;str[i]!='\0';i++)

lcddat(str[i]);

}

void lcdcmd(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd&0xf0); //highernibble

IOSET0 = LCDDAT;

IOCLR0 = RS;

IOSET0 =CE;

wait();//(100); //enable lcd

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04) & 0xf0);

IOSET0 = LCDDAT;

IOCLR0 = RS;

IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

}

//lower nibble

void lcddat(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd&0xf0); //highernibble

IOSET0 = LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lowernibble

IOSET0 = LCDDAT;

IOSET0 = RS;

IOSET0 = CE;

wait();//(100); //enable lcd

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

}

void clrscr(char ch)

{

if(ch==0)

{

printstr(" ",0,0);

gotoxy(0,0);

}

else if(ch ==1)

{

printstr(" ",0,1);

gotoxy(0,1);

}

else

{

lcdcmd(0x01);

// delay(100);

}

}

void split_numbers(unsigned int number)

{

thousands = (number /1000);

number %= 1000;

hundreds = (number / 100);

number %= 100;

tens = (number / 10);

number %= 10;

ones = number ;

}

void Wait_Msg(void)

{

lcdcmd(0x01);

printstr(" WELCOME TO ", 0, 0);

printstr("MAHABARATHI ENGG COLLEGE", 0, 1);

}

void Welcome_Msg(void)

{

lcdcmd(0x01);

printstr(" ARM-7 LPC2148 ", 0, 0);

printstr("32-Bitcontroller", 0, 1);

}

main_LCD_Test.c

#include <LPC214x.H>/* LPC214x definitions */

#include "lcd.h" /* includes lcd driver funtions*/

int main(void)

{

lcdinit(); /*Initializelcd*/

Wait_Msg(); /*Display message - "Please Wait"*/

Welcome_Msg(); /*Display message - "Welcome to MAHABARATHI ENGG COLLEGE"*/

while(1) /*LoopForever*/

{

}

}

Testing the LCD Module with LPC2148

Give +3.3V power supply to LPC2148 Primer Board; the LCD is connected with

microcontroller LPC2148 Primer Board. When the program is downloading into LPC2148 in

Primer Board, the screen should show the text messages.

OUTPUT:

"WELCOMETO"

"MAHA BARATHI ENGG COLLEGE

RESULT:

Thus the interfacing LCD display with ARM processor is done

and text is displayed in LCD

INTERFACING OF KEYBOARD WITH ARM PROCESSOR

 Experiment No.3(a) Date:

 AIM:

 To interface Keyboard with ARM processor.

APPARATUS REQUIRED :

1. PC with keil µversion 5and flash magic workbench software

2. LPC2148 processor kit

3. USB Cable

 KEYPAD:

A keypad is a set of buttons arranged in a block or "pad" which usually bear digits,

symbols and usually a complete set of alphabetical letters. If it mostly contains numbers then it

can also be called a numeric keypad. Keypads are found on manyalphanumeric keyboardsandon

other devices such as calculators, push-button telephones, combination locks, and digital door

locks, which require mainly numeric input. Here LPC2148 using 4 X 4 matrix keypad.

PROCEDURE:

Keil ompiler

Step 1

Open keil µversion project


menu


project


new µ version project


Select

location


open new folder


give file name


save

Step 2

 

Menu file new

Step3

Type a progra


save a program with .c or .h extensions
m

Step 4

Right corner


target


source group


right click


add existing files to group

“source group1”


add “c” and “h” files

working) disable


linker (use memory layout from target dialog) enable


OK

Step 6

Build a program


check errors and warnings

https://en.wikipedia.org/wiki/Alphanumeric_keyboard
https://en.wikipedia.org/wiki/Calculators
https://en.wikipedia.org/wiki/Calculators
https://en.wikipedia.org/wiki/Combination_locks
https://en.wikipedia.org/wiki/Digital_door_lock
https://en.wikipedia.org/wiki/Digital_door_lock

Flash magic

Open Flash Magic s/w

Step 1: Select a device


LPC2148

Select comport


USB comport

Baud rate


9600

Oscillator freq


12MHZ

Step 2: Erase blocks used by Hex files (enable)

Step 3:Browse.hex file

Step 4: Select verifying after programming

Step5: Click start

PROGRAM CODE:

defs.h

/***********local defenitions ***********************************/

#define ROW1 0x00010000;

#define ROW2 0x00020000;

#define ROW3 0x00040000;

#define ROW4 0x00080000;

#define SW1 0x00000001;

#define SW2 0x00000002;

#define SW3 0x00000004;

#define SW4 0x00000008;

#define ERR0x00000000;

#define ROW_MASK 0x000F0000;

#define S7SEG_ENB 0x00B80000;

#define DIGI1_ENB 0x00080000;

#define DIGI2_ENB 0x00100000;

#define DIGI3_ENB 0x00200000;

#define DIGI4_ENB 0x00800000;

#define S7SEG_LED0xff000000;

#define ZERO 0x3F000000;

#define ONE 0x06000000;

#define TWO 0x5B000000;

#define THREE0x4F000000;

#define FOUR 0x66000000;

#define FIVE 0x6D000000;

#define SIX 0x7D000000;

#define SEVEN 0x07000000;

#define EIGHT 0x7F000000;

#define NINE 0x6F000000;

#define AAA 0x77000000;

#define bbb 0x7C000000;

#define ccc 0x39000000;

#define ddd 0x5E000000;

#define eee 0x79000000;

#define fff0x71000000;

lcd.h

void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char);

void lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or

1 void printstr(char *,char,char); //string,column(x),line(y) void wait

(void);

void split_numbers(unsigned int number);

void Wait_Msg(void);

void Welcome_Msg(void);

mat_7seg.h

/* Function prototypes */

void init_Matrix_7seg(void);

unsigned long scan_row(unsigned int);

unsigned int catch_key(void);

void clearall_7seg(void);

void clearDigit_7seg(int);

void Digit_Dispay(int, unsigned int);

void split_numbers(unsigned int);

void Display_Number(unsigned int);

void Alpha_Dispay(int, unsigned int);

main.c

#include <LPC214x.h>

#include "mat_7seg.h"

#include "lcd.h"

int main()

{

unsigned int key, last_key, Disp_key;

init_Matrix_7seg(); // Initialize matrix keyboard and 7segment dispaly

clearall_7seg(); // clear 7 segment display

last_key=0; // Initialize this variable

tozero while(1)

{

key =

catch_key();

if(key != 0)

{

// scan for a valid key press

// zero means no key is pressed

STEP1)

if(key != last_key) // check whether the same key is pressed again(assume this as

{

Disp_key = key; // valid new key is stored in another variable

last_key = key; // this variable's value is used for STEP1 }

}

Alpha_Dispay(4,Disp_key

);

(single digit only)*/

}

/*this function is used to display number in hex format

}

matrix_7seg_driver.c#inclu

de <LPC214x.h> #include

"defs.h"

void init_Matrix_7seg(void)

IODIR1 |= 0xff0f0000; // set 7seg LEDs as output ports and matrix's MSB as inputs and LSB

as outputs

IODIR0 |=

S7SEG_ENB;

IOPIN0 |= S7SEG_ENB;

signals

}

// set P0.19 to P0.22 as outputs to drive 7seg enable pins

// since we are using active low 7 seg display, the enable

// should be initially set to HIGH.

unsigned long scan_row(unsigned int row_num)

{

//unsigned int row,i;

unsigned long val;

IOSET1= ROW_MASK; //clear the previous scan row output ie make all row ops high

switch(row_num)

{

case 1: IOCLR1 = ROW1;break; // make P1.16 low

case 2: IOCLR1 = ROW2;break; // make P1.17 low

case 3: IOCLR1 = ROW3;break; // make P1.18 low

case 4: IOCLR1 = ROW4;break; // make P1.19 low

//default: row = ERR;

}

// for(i=0;i<=65000;i++);

val=IOPIN1; // read the matrixinputs

val = ((val >> 20) & 0x0000000F)^0x0000000F; // shift the colum value so that

it comes to LSB

// XORing is done to take 1's complement of shifted value.

return(val);

}

unsigned int catch_key(void)

{

unsigned long v;

v = scan_row(1);

switch(v)

{

case 1:return(13);

case 2:return(14);

case 4: return(15);

case 8: return(16);

}

v = scan_row(2);

switch(v)

{

case 1: return(9);

case 2:return(10);

case 4:return(11);

case 8: return(12);

}

v = scan_row(3);

switch(v)

{

case 1: return(5);

case 2: return(6);

case 4:return(7);

case 8:return(8);

}

v = scan_row(4);

switch(v)

{

case 1:return(1);

case 2:return(2);

case 4:return(3);

case 8: return(4);

default: return(0);

}

}

void clearall_7seg(void)

{

IOPIN1 &= ~S7SEG_LED; // make all the 7seg led pins to LOW

IOPIN0 |=S7SEG_ENB // Disable all the 7 segdisplay

}

void clearDigit_7seg(int digit_num)

{

IOPIN0 |= S7SEG_ENB; // clear enables first

switch(digit_num)

{

case 1: {

IOPIN0 =~DIGI1_ENB; // now enable only thedigit1

break;

}

case 2: {

IOPIN0 =~DIGI2_ENB; // now enable only thedigit2

break;

}

case3:

{

IOPIN0 =~DIGI3_ENB; // now enable only thedigit3

break;

}

case4

{

IOPIN0 =~DIGI4_ENB; // now enable only thedigit4

break;

}

}

IOPIN1 &= ~S7SEG_LED; // make all the 7seg LED pins LOW

}

void Digit_Dispay(int digit_num, unsigned int value)

{

clearDigit_7seg(digit_num);

switch(value)

{

case 0: IOPIN1 |= ZERO;break;

case 1: IOPIN1 |= ONE; break;

case 2: IOPIN1 |= TWO; break;

case 3: IOPIN1 |= THREE;break;

case 4: IOPIN1 |= FOUR; break;

case 5: IOPIN1 |= FIVE; break;

case 6: IOPIN1 |= SIX; break;

case 7: IOPIN1 |= SEVEN; break;

case 8: IOPIN1 |= EIGHT; break;

case 9: IOPIN1 |= NINE;break;

}

}

void Alpha_Dispay(int digit_num, unsigned int value)

{

clearDigit_7seg(digit_num);

switch(value)

{

case 1: IOPIN1 |= ZERO;break;

case 2: IOPIN1 |= ONE; break;

case 3: IOPIN1 |= TWO; break;

case 4: IOPIN1 |= THREE;break;

case 5: IOPIN1 |= FOUR; break;

case 6: IOPIN1 |= FIVE; break;

case 7: IOPIN1 |= SIX; break;

case 8: IOPIN1 |= SEVEN; break;

case 9: IOPIN1 |= EIGHT; break;

case 10: IOPIN1 |= NINE; break;

case 11: IOPIN1 |= AAA; break;

case 12: IOPIN1 |= bbb; break;

case 13: IOPIN1 |= ccc; break;

case 14: IOPIN1 |= ddd; break;

case 15: IOPIN1 |= eee; break;

case 16: IOPIN1 |= fff;break;

}

}

void split_numbers(unsigned int number)

{

thousands = (number /1000);

number %= 1000;

hundreds = (number / 100);

number %= 100;

tens = (number / 10);

number %= 10;

ones = number ;

}

/**/

void Display_Number(unsigned int num)

{

unsigned int i;

if(num <= 9999)

{

clearall_7seg();

split_numbers((unsignedint)num);

Digit_Dispay(4, ones);

for(i=0;i<10000;i++);

Digit_Dispay(3, tens);

for(i=0;i<10000;i++);

Digit_Dispay(2,hundreds);

for(i=0;i<10000;i++);

Digit_Dispay(1, thousands);

for(i=0;i<10000;i++);

}

}

lcd.c

#include <LPC214x.h>

#define RS 0x00000400 /* P0.10 */

#define CE 0x00001800 /* P1.11 */

void clrscr(char ch);

void lcdinit(void);

void lcdcmd(char);

void lcddat(char);

void gotoxy(char,char); //x,y ; x-char position(0 - 16) y-line number 0 or 1

voidprintstr(char*,char,char); //string,column(x),line(y)

void wait (void);

void split_numbers(unsigned int number);

#define SET1

#define OFF0

unsigned int thousands,hundreds,tens,ones;

void wait (void){ /* wait function*/

int d;

for (d = 0; d <100000;d++); /* only to delay for LED flashes */

}

void lcdinit()

{

IODIR0 |= 0x0000FFFF;

IOCLR0 |= 0X00000FFF;

lcdcmd(0x28);

lcdcmd(0x28);

lcdcmd(0x0c);

lcdcmd(0x06);

lcdcmd(0x01);

lcdcmd(0x0f);

wait();

}

void gotoxy(char x, char y)

{

if(y == 0)

lcdcmd(0x80+x);

else

lcdcmd(0xc0+x);

}

void printstr(char *str, char x, char y)

{

char i;

gotoxy(x,y);

wait();//(500);

for(i=0;str[i]!='\0';i++)

lcddat(str[i]);

}

void lcdcmd(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd&0xf0); //highernibble

IOSET0 = LCDDAT;

IOCLR0 = RS;

IOSET0 =CE;

wait();//(100); //enable lcd

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lowernibble

IOSET0 = LCDDAT;

IOCLR0 = RS;

IOSET0 =CE;

wait();//(100); //enable lcd

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

}

void lcddat(char cmd)

{

unsigned char LCDDAT;

LCDDAT = (cmd&0xf0); //highernibble

IOSET0 = LCDDAT;

IOSET0 = RS;

IOSET0 =CE;

wait();//(100); //enable lcd

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

LCDDAT = ((cmd<<0x04)&0xf0); //lowernibble

IOSET0 = LCDDAT;

IOSET0 = RS;

IOSET0 =CE;

wait();//(100); //enable lcd

IOCLR0 =CE;

IOCLR0 = 0X00000FFF;

}

void clrscr(char ch)

{ if(ch==0)

{

printstr("",0,0);

gotoxy(0,0);

}

else if(ch == 1)

{

printstr(" ",0,1);

gotoxy(0,1);

}

else

{

lcdcmd(0x01);

//delay(100);

}

}

void split_numbers(unsigned int number)

{

thousands = (number /1000);

number %= 1000;

hundreds = (number / 100);

number %= 100;

tens = (number / 10);

number %=10;

ones = number;

}

void Wait_Msg(void)

{

lcdcmd(0x01);

printstr("PLEASEWAIT ", 0, 0);

}

void Welcome_Msg(void)

{

lcdcmd(0x01);

printstr(" WELCOME TO ", 0, 0);

printstr("SM MICRRO SYSTEM", 0, 1);

}

Testing with Keyboard:

Each press of a key corresponding character is displayed on the Seven Segment Display.

Output:

Sw1 –

RESULT:

 Thus the keyboard interfacing with ARM processor is done and pressed key is verified

successfully.

INTERFACING OF STEPPER MOTOR USING ARMPROCESSOR

 Experiment No.3(b) Date:

AIM:

To interface stepper motor with ARM processor.

APPARTAUS REQUIRED:

1. PC with keil µversion 5and flash magic workbench software

2. LPC2148 processor kit

3. USB Cable

4. Stepper motor with driver module

THEORY:

A stepper motor is a brushless, synchronous electric motor that converts digital pulses

into mechanical shaft rotation. Every revolution of the stepper motor is divided into a discrete

number of steps, and the motor must be sent a separate pulse for each step.

PROCEDURE:

Keil ompiler

Step 1

Open keil µversion project


menu


project


new µ version project


Select

location


open new folder


give file name


save

Step 2

 

Menu file new

Step3

Type a program


save a program with .c or .h extensions

Step 4

Right corner


target


source group


right click


add existing files to group

“source group1”


add “c” and “h” files

working) disable


linker (use memory layout from target dialog) enable


OK

Step 6

Build a program


check errors and warnings

Flash magic

Open Flash Magic s/w

Step 1: Select a device


LPC2148

Select comport


USB comport

Baud rate


9600

Oscillator freq


12MHZ

Step 2: Erase blocks used by Hex files (enable)

Step 3:Browse.hex file

Step 4: Select verifying after programming

Step5: Click start

PROGRAM CODE:

stepper.c

#include<LPC214x.H> /* LPC214x definitions*/

#define step1 0x00010000 /* P1.16 */

#define step2 0x00020000 /* P1.17 */

void wait (void)

{ /*waitfunction*/

intd;

for (d = 0; d <10000;d++); /* only to delay for LED flashes*/

}

void call_stepper_forw()

{

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00040000;

wait();

wait();

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00060000;

wait();

wait();

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00070000;

wait();

wait();

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00050000;

wait();

wait();

}

/*voidcall_reverse(void)

{

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00050000;

wait();

wait();

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00070000;

wait();

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00060000;

wait();

IOCLR1 = 0X00FF0000;

IOSET1 = 0X00040000;

wait();

} */

int main (void)

{

IODIR1 |= 0xFFFFFFFF;

IOCLR1 |= 0X00FF0000;

wait();

while(1) /*LoopForever*/

{

call_stepper_forw();

//call_reverse();

wait();

IOCLR1 = 0X00FF0000;

}

}

Testing the Stepper Motor with LPC2148:

Give +3.3V power supply to LPC2148 Primer Board; the Stepper Motor is connected

with LPC2148 Primer Board. When the program is downloading into LPC2148 in Primer

Board, the LED output is working that the LED is ON some time period and the LED is OFF

some other time period for a particular frequency. Now, the stepper motor is rotating.

Output:

The stepper motor was rotated in clockwise direction.

RESULT:

 Thus the interfacing of stepper motor with ARM processor is done successfully.

Mini projects for IOT:

1. Garbage Segregator and Bin Level Indicator

2. Colour based Product Sorting

3. Image Processing based Fire Detection

4. Vehicle Number Plate Detection

5. Smart Lock System

Objective:

To apply the knowledge, they gained in doing the experiments.

Team constitution:

A team size may be from 3 to 4 students.

Guidelines:

1. Students shall from a group and can do their mini project.

2. Student must buy their own hardware setup for doing mini projects.

3. If they are utilizing the college resource, they should get approval from HoD.

4. At the end, a report along with hardware must be submitted to college.

5. If required students need to present their work as presentation.

1. Garbage Segregator and Bin Level Indicator

IDEA:

With progress in human technology we have seen a substantial progress in the amount of waste

generated. Recycling is the only way to manage this huge amount of waste. But recycling requires garbage to

be segregated. Without segregation garbage cannot be recycled because different type of garbage requires

different recycling processes.

Also it is important to educate users and instruct them every time they come near the dustbin about

instructions about throwing the trash. For this purpose we design a garbage disposal system that uses multiple

dustbins with a voice based system that speaks to the user each time he she stands before the dustbin.

The system makes use of a camera to detect presence if any person in front of the dustbin. If a person is

detected, the system issues voice instructions to the user about throwing right garbage in the right bin. In case

the dustbin is full it instructs the user to find another dustbin to throw garbage in.

To develop this system we make use of a raspberry Pi controller. The controller is interfaced with a camera

and a voice speaker for detection and communication. The controller gets dustbin level input using ultrasonic

level sensors each having LED indicators interfaced to it. The level sensors are used to constantly feed the

raspberry pi with bin levels.

The Arduino Uno microcontroller is also interfaced with a Wifi module to transmit the level data over the

internet. The Level sensor panels are made to be easily mounted over any dustbin. This allows the system to

be easily screwed over any dustbin for instant installation.

The data is transmitted over IOT to IOT gecko platform which displays the bin level data over internet. This

indication can be used to alert the authorities that the garbage bins need to be emptied. Thus the system

automates garbage segregation and level monitoring to help counter the garbage crisis using IOT.

Components

Arduino Uno microcontroller, Ultrasonic level sensors,

Ultrasonic Level Sensors, LED Indicators, IR Sensors, LCD,

Buzzer, GSM, GPS, Servo motor and IR sensors

2. Colour based Product Sorting

IDEA:

The proposed methodology is designed to efficiently sort items based on colour using machine learning with

the help of Raspberry Pi, camera modules, sensors, servo motors, and the IBM Watson visual recognition

model. The methodology includes several crucial steps to achieve accurate sorting:

Firstly, a comprehensive colour database is compiled, containing various product images captured under

various lighting conditions and angles. These images serve as the foundation for training the machine learning

model. Next, the learning model is constructed using Python and libraries for implementation. The model

undergoes preprocessing to enhance image quality and reduce noise, ensuring optimal performance during

classification. Finally, the robotic arm selectively picks up and sorts the products into designated bins based on

their predicted colours. This automated sorting process ensures efficient and accurate handling of large

volumes of diverse products. In summary, the proposed methodology combines machine learning, image

processing, and robotic automation to create a robust system for colour-based product sorting. This approach

offers a scalable solution for various industrial and commercial applications by leveraging Python

programming and advanced technologies.

3. Image Processing based Fire Detection

IDEA:

The main advantage of Image Processing Based Fire Detection System is the early warning benefit.

This system can be installed just about anywhere in a commercial building, malls and at many more public

places for fire detection. This system uses camera for detecting fires. So we do not need any other sensors

to detect fire. System processes the camera input and then processor processes it to detect fires. The heat

signatures and fire illumination patterns are detected in images to determine if it is a fire and take action

accordingly. On detecting fire system goes into emergency mode and sounds an alarm. Also displays the

status on the LCD display informing about the system.

Hardware Specifications

BLOCK DIAGRAM:

4. Vehicle Number Plate Detection

IDEA:

5. SMART LOCK SYSTEM

IDEA:

The Smart Lock System with Face Recognition is a revolutionary innovation in home and office

security, combining advanced technologies like face recognition, keypad entry, and fingerprint scanning.

This innovative solution redefines access control, offering a seamless and user-friendly experience,

replacing traditional lock and key mechanisms. It goes beyond traditional methods, providing a safer and

more convenient solution for occupants.

The smart lock uses advanced face recognition technology, utilizing advanced algorithms and

artificial intelligence, to accurately identify and authenticate individuals based on facial features. This

technology eliminates the need for physical keys or cards, providing a secure, touch less access. The

system can even distinguish between live faces and photographs, ensuring robust security.

The keypad entry system complements the face recognition feature, providing users with a unique PIN

(Personal Identification Number) code for access. This adds security and serves as a backup in case of

low lighting or temporary obstructions, ensuring occupants can always gain access, even in challenging

situations.

 The three-layer security system incorporates fingerprint scanning technology, a unique biometric

identifier for each individual. This method adds personalization and security, providing quick and

convenient access for authorized users. Fingerprint recognition is highly accurate and highly accurate,

making it an ideal biometric identifier.

	Flash magic
	PROGRAM CODE:
	LCD.C
	ADC_ DRIVER.C
	Testing:
	Step 6
	Flash magic (1)
	PROGRAMCODE:
	Testing with DAC:
	Output:
	PROGRAM CODE: (1)
	Output: (1)
	RESULT:
	Step 6 (1)
	Flash magic (2)
	PROGRAM CODE: (2)
	lcd.c
	main_LCD_Test.c
	Testing the LCD Module with LPC2148
	OUTPUT:
	RESULT: (1)
	Step 6 (2)
	Flash magic (3)
	PROGRAM CODE: (3)
	lcd.h
	mat_7seg.h
	main.c
	/**/
	lcd.c (1)
	Testing with Keyboard:
	Output: (2)
	RESULT: (2)
	AIM:
	APPARTAUS REQUIRED:
	THEORY:
	Step 6 (3)
	Flash magic (4)
	PROGRAM CODE: (4)
	Testing the Stepper Motor with LPC2148:
	Output: (3)
	RESULT: (3)

